OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ## ECEN 5713 Linear System Fall 1998 Midterm Exam #2 | Name : | | |-----------------|--| | Student ID: | | | F-Mail Address: | | **Problem 1**: Let $F = \{0,1,2,3,4\}$. Define the rules of addition and multiplication such that F is a field. #### **Problem 2**: Find the "<u>relationship</u>" between the two bases $\{v^1, v^2, v^3\}$ and $\{\overline{v}^1, \overline{v}^2, \overline{v}^3\}$, where $v^1 = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}^T$, $v^2 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$, $v^3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, $\overline{v}^1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, $\overline{v}^2 = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$, and $\overline{v}^3 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. Determine the "<u>representations</u>" of the vector $e_2 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ with respect to both of the above bases. ### Problem 3: Determine the matrix X in $\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & X \\ 0 & D^{-1} \end{bmatrix}$, where it is assumed that A and D are nonsingular. Problem 4: Determine the bases for the range and null spaces of the matrix $$A = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}.$$ ## Problem 5: Let $$S = \left\{ x \in \Re^3 | x = \alpha \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \alpha \in \Re \right\},\,$$ find the orthogonal complement space of S, $S^{\perp}(\subset \Re^3)$, and determine an orthonormal basis and dimension for S^{\perp} . For $x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{T} (\in \Re^{3})$, find its direct sum representation (i.e., x_{1} and x_{2}) of $x = x_1 \oplus x_2$, such that $x_1 \in S$, $x_2 \in S^{\perp}$.