O K L A H O M A S T A T E U N I V E R S I T Y SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 5713 Linear System
Fall 1998
Midterm Exam \#2

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Let $F=\{0,1,2,3,4\}$. Define the rules of addition and multiplication such that F is a field.

Problem 2:

Find the "relationship" between the two bases $\left\{v^{1}, v^{2}, v^{3}\right\}$ and $\left\{\bar{v}^{1}, \bar{v}^{2}, \bar{v}^{3}\right\}$, where
$v^{1}=\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{T}, v^{2}=\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{T}, v^{3}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}, \bar{v}^{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}, \bar{v}^{2}=\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]^{T}$, and $\bar{v}^{3}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}$. Determine the "representations" of the vector $e_{2}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$ with respect to both of the above bases.

Problem 3:

Determine the matrix X in $\left[\begin{array}{cc}A & B \\ 0 & D\end{array}\right]^{-1}=\left[\begin{array}{cc}A^{-1} & X \\ 0 & D^{-1}\end{array}\right]$, where it is assumed that A and D are nonsingular.

Problem 4:

Determine the bases for the range and null spaces of the matrix

$$
A=\left[\begin{array}{lll}
3 & 2 & 1 \\
3 & 2 & 1 \\
3 & 2 & 1
\end{array}\right] .
$$

Problem 5:

Let

$$
S=\left\{x \in \mathfrak{R}^{3} \left\lvert\, x=\alpha\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right., \alpha \in \mathfrak{R}\right\},
$$

find the orthogonal complement space of $S, S^{\perp}\left(\subset \mathfrak{R}^{3}\right)$, and determine an orthonormal basis and dimension for S^{\perp}. For $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}\left(\in \mathfrak{R}^{3}\right)$, find its direct sum representation (i.e., x_{1} and x_{2}) of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in S, x_{2} \in S^{\perp}$.

